Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A novel two-dimensional $(4,4)$ network based on dinuclear cadmium secondary building units: poly[(μ_{5}-benzene-1,4-diacetato) [$\mu_{2^{-}}$ 1,4-bis(1,2,4-triazol-1-yl)butane]cadmium(II)]

Jun Wang,* Xiao-Juan Xu and Jian-Qing Tao

Department of Chemistry, Yancheng Teachers' College, Yancheng 224002, People's Republic of China
Correspondence e-mail: wjyctu@gmail.com

Received 12 March 2011
Accepted 28 March 2011
Online 14 April 2011

In the title mixed-ligand metal-organic polymeric compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{6}\right)\right]_{n}$ or $[\mathrm{Cd}(\mathrm{PBEA})(\mathrm{BTB})]_{n}\left[\mathrm{H}_{2}\right.$ PBEA is benzene-1,4-diacetic acid and BTB is 1,4-bis(1,2,4-triazol-1yl)butane], the asymmetric unit contains one $\mathrm{Cd}^{\mathrm{II}}$ ion, one BTB molecule and one PBEA ${ }^{2-}$ anion. The $\mathrm{Cd}^{\mathrm{II}}$ ion is in a slightly distorted pentagonal-bipyramidal geometry, coordinated by five carboxylate O atoms from three distinct PBEA ${ }^{2-}$ anions and by two BTB N atoms. There are two coordination patterns for the carboxylate groups of the PBEA ${ }^{2-}$ ligand, one being a $\mu_{1}-\eta^{1}: \eta^{1}$ chelating mode and the other a $\mu_{2}-\eta^{2}: \eta^{1}$ bridging mode, while the BTB molecule shows a trans-transtrans conformation. The crystal structure is constructed from the secondary building unit (SBU) $\left[\mathrm{Cd}_{2}\left(\mathrm{CO}_{2}\right)_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$, in which the two metal centres are held together by two PBEA ${ }^{2-}$ linkers. The SBU is connected by BTB and PBEA ${ }^{2-}$ bridges to form a two-dimensional grid-like $(4,4)$ layer with meshes of dimensions $14.69 \times 11.28 \AA$.

Comment

Considerable attention has been paid to the construction of highly connected metal-organic frameworks (MOFs) with enhanced stability and stable porosity, not only because of their fascinating structures and topologies but also owing to their potential applications in many fields (Kitagawa et al., 2004; Ferey et al., 2005; Roy et al., 2009; Zhang et al., 2009; Jiang et al., 2010). A feasible pathway toward highly connected MOFs is to use a polynuclear metal cluster as a secondary building unit (SBU), because such clusters can effectively reduce steric hindrance between organic ligands. The mainstream method of constructing such clusters is to utilize carboxylate-containing ligands, since carboxylate groups have
excellent coordination capability and flexible coordination patterns. Furthermore, carboxylate groups can prompt core aggregation via bridging metal ions (Eddaoudi et al., 2001).

Compared with the corresponding rigid terephthalic acid, benzene-1,4-diacetic acid $\left(\mathrm{H}_{2} \mathrm{PBEA}\right)$ may show a variety of coordination modes and conformations owing to the increased flexibility of its two carboxylate groups (Pan et al., 2003; Chen et al., 2006; Braverman \& LaDuca, 2007; Wang, Yang et al., 2008). Meanwhile, 1,4-bis(1,2,4-triazol-1-yl)butane (BTB) can adopt different conformations on the basis of the relative orientation of its CH_{2} groups (Zhou et al., 2006; Gu et al., 2008; Wang, Zhang et al., 2008; Zhu et al., 2009). However, to the best of our knowledge, coordination polymers constructed from $\mathrm{H}_{2} \mathrm{PBEA}$ and BTB ligands have not been documented so far. We have selected H_{2} PBEA and BTB as organic linkers, generating the title new $\mathrm{Cd}^{\mathrm{II}}$ coordination polymer, $[\mathrm{Cd}(\mathrm{PBEA})(\mathrm{BTB})]_{n},(\mathrm{I})$, the crystal structure of which we now report.

Compound (I) crystallizes in the monoclinic space group $P 2_{1} / c$, and the asymmetric unit contains one $\mathrm{Cd}^{\mathrm{II}}$ ion, one PBEA $^{2-}$ ligand and one BTB molecule. Each $\mathrm{Cd}^{\mathrm{II}}$ centre is seven-coordinated by two triazole N atoms (N 1 and $\mathrm{N} 4^{\mathrm{iii}}$) from two different BTB ligands and five O atoms ($\mathrm{O} 1, \mathrm{O} 2$, $\mathrm{O} 3^{\mathrm{i}}, \mathrm{O} 4^{\mathrm{i}}$ and $\mathrm{O} 4^{\mathrm{ii}}$) from three distinct PBEA^{2-} ligands, resulting in a distorted pentagonal-bipyramidal geometry (Fig. 1) [symmetry codes: (i) $x-1, y, z-1$; (ii) $-x+2,-y+1$, $-z+1$; (iii) $x, y, z-1]$. The equatorial plane is defined by the carboxylate O atoms, while the axial positions are occupied by two BTB N atoms. The $\mathrm{Cd}-\mathrm{N}$ bond lengths are 2.324 (2) and 2.3243 (19) \AA, while the $\mathrm{Cd}-\mathrm{O}$ bond lengths vary greatly, from 2.3171 (17) to 2.4980 (17) \AA. The average $\mathrm{Cd}-\mathrm{O}$ and

Figure 1
A view of the local coordination of the $\mathrm{Cd}^{\mathrm{II}}$ cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x-1, y, z-1$; (ii) $-x+2,-y+1$, $-z+1$; (iii) $x, y, z-1$.]
$\mathrm{Cd}-\mathrm{N}$ distances in (I) are comparable with those reported for Cd-based compounds (Liu et al., 2008).

Importantly, each $\mathrm{H}_{2} \mathrm{PBEA}$ ligand in (I) is completely deprotonated and links three $\mathrm{Cd}^{\mathrm{II}}$ atoms, while there are two
coordination patterns for the PBEA ${ }^{2-}$ ligand, one being a μ_{1-} $\eta^{1}: \eta^{1}$ chelating mode and the other a $\mu_{2}-\eta^{2}: \eta^{1}$ bridging mode. Two crystallographically equivalent $\mathrm{Cd}^{\mathrm{II}}$ atoms are bridged by two tridentate bridging carboxylate groups to form a binuclear motif (the SBU), with a Cd…Cd separation of 3.9848 (3) Å, and the SBUs are joined by PBEA ${ }^{2-}$ ligands to form an infinite ladder-like one-dimensional chain along [010]. The separation between the SBUs in the chain is 11.2773 (6) \AA. Furthermore, a two-dimensional layer (Fig. 2) perpendicular to the b axis is formed by SBUs double-joined by both BTB and PBEA ${ }^{2-}$ units. The Miller indices of this plane are (010), in which the BTB molecule shows a trans-trans-trans conformation with a Cd…Cd separation of 14.6837 (8). These sheets are further arranged parallel to the (010) plane and these sheets are connected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between an alkyl C atom and a neighbouring carboxylate O atom (Table 1).

In conclusion, we have synthesized a two-dimensional coordination polymer based on the secondary building unit $\left[\mathrm{Cd}_{2}\left(\mathrm{CO}_{2}\right)_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$, in which the PBEA ${ }^{2-}$ ligand forms a onedimensional ladder-like chain based on a dinuclear $\mathrm{Cd}_{2} \mathrm{SBU}$ and the BTB ligand is used to extend the framework.

Experimental

A mixture of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad(34.5 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{PBEA}$ ($19.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), BTB ($19.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{NaOH}(8.0 \mathrm{mg}$, $0.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was sealed in a 16 ml Teflon-lined stainless steel container and heated at 413 K for 72 h . After cooling to room temperature, white block-shaped crystals of (I) were collected by filtration and washed several times with water and ethanol (yield 32.5%, based on H_{2} PBEA). Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CdN}_{6} \mathrm{O}_{4}$: C 43.52, H 4.06, N 16.92\%; found: 43.61, H 4.08, N 16.94%.

Figure 2

A view of the two-dimensional framework of (I).

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{3}$	0.97	2.29	$3.220(3)$	160

Symmetry code: (i) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{6}\right)\right]$	$V=1892.68(17) \AA^{3}$
$M_{r}=496.81$	$Z=4$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=9.8072(5) \AA$	$\mu=1.19 \mathrm{~mm}^{-1}$
$b=17.1235(9) \AA$	$T=290 \mathrm{~K}$
$c=14.6837(6) \AA$	$0.25 \times 0.21 \times 0.17 \mathrm{~mm}$

$\beta=129.866(2)^{\circ}$
$0.25 \times 0.21 \times 0.17 \mathrm{~mm}$

Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.75, T_{\text {max }}=0.816$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$

266 parameters

$w R\left(F^{2}\right)=0.060$
$S=0.90$
3380 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.66$ e \AA^{-3}
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$

H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (triazole) or $0.97 \AA$ (methylene), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (grant No. 08KJB4310016).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: QS3003). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Braverman, M. A. \& LaDuca, R. L. (2007). Cryst. Growth Des. 7, $2343-$ 2351.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z.-L., Zhang, Y.-Z., Liang, F.-P. \& Wu, Q. (2006). Acta Cryst. E62, m2409-m2411.
Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
Ferey, G., Mellot-Draznieks, C., Serre, C. \& Millange, F. (2005). Acc. Chem. Res. 38, 217-225.
Gu, Z.-G., Xu, Y.-F., Zhou, X.-H., Zuo, J.-L. \& You, X.-Z. (2008). Cryst. Growth Des. 8, 1306-1312.
Jiang, H. L., Liu, B. \& Xu, Q. (2010). Cryst. Growth Des. 10, 806-811.
Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334 2375.

Liu, X., Liu, K., Yang, Y. \& Li, B. (2008). Inorg. Chem. Commun. 11, $1273-$ 1275.

Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, C., Hattori, Y. \& Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062-3067.
Roy, S., Mahata, G. \& Biradha, K. (2009). Cryst. Growth Des. 9, 5006-5008.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, L.-Y., Yang, Y., Liu, K., Li, B.-L. \& Zhang, Y. (2008). Cryst. Growth Des. 8, 3902-3904.
Wang, L., Zhang, H., Yue, L. \& Zhang, Z. (2008). Acta Cryst. E64, m1505.
Zhang, Y. B., Zhang, W. X., Feng, F. Y., Zhang, J. P. \& Chen, X. M. (2009). Angew. Chem. Int. Ed. 48, 5287-5290.
Zhou, J., Liu, X., Zhang, Y., Li, B. \& Zhang, Y. (2006). J. Mol. Struct. 788, $194-$ 199
Zhu, X., Liu, X.-G., Li, B.-L. \& Zhang, Y. (2009). CrystEngComm, 11, 9971000.

